CLEAR-AIR TURBULENCE ASSOCIATED WITH NEGATIVE VERTICAL WIND SHEAR

1957 ◽  
Vol 14 (2) ◽  
pp. 188-189
Author(s):  
H. Ararawa
1955 ◽  
Vol 36 (2) ◽  
pp. 53-60 ◽  
Author(s):  
Leroy H. Clem

The development of turbo-jet aircraft has made high-level clear air turbulence a major problem for aviation interests. This paper emphasizes the association of the majority of this turbulence with the pronounced vertical wind shear in and near the maximum wind speed centers that move along the jet stream. A physical model is proposed as a possible explanation of clear air turbulence, the associated cirrus bands and wind streaks in the jet maxima. This model is supported by an analogy drawn with similar low-level phenomena studied by Woodcock and others. The model can explain distribution of these features in the horizontal by means of helical vortices which are dependent upon proper vertical wind shear and stability conditions. The observed multiple layers in the vertical are also explained by this model. It is believed that the reason why most of the clear-air turbulence is found near the jet-stream maxima is simply because the necessary shear and stability conditions associated with this turbulence are most frequently fulfilled in that region.


2020 ◽  
Vol 148 (11) ◽  
pp. 4587-4605
Author(s):  
Katelyn A. Barber ◽  
Gretchen L. Mullendore

AbstractTurbulence (clear-air, mountain wave, convectively induced) is an aviation hazard that is a challenge to forecast due to the coarse resolution ultilized in operational weather models. Turbulence indices are commonly used to aid pilots in avoiding turbulence, but these indices have been designed and calibrated for midlatitude clear-air turbulence prediction (e.g., the Ellrod index). A significant limitation with current convectively induced turbulence (CIT) prediction is the lack of storm stage dependency. In this study, six high-resolution simulations of tropical oceanic and midlatitude continental convection are performed to characterize the turbulent environment near various convective types during the developing and mature stages. Second-order structure functions, a diagnostic commonly used to identify turbulence in turbulence prediction systems, are used to characterize the probability of turbulence for various convective types. Turbulence likelihood was found to be independent of region (i.e., tropical vs midlatitude) but dependent on convective stage. The probability of turbulence increased near developing convection for the majority of cases. Additional analysis of static stability and vertical wind shear, indicators of turbulence potential, showed that the convective environment near developing convection was more favorable for turbulence production than mature convection. Near developing convection, static stability decreased and vertical wind shear increased. Vertical wind shear near mature and developing convection was found to be weakly correlated to turbulence intensity in both the tropics and the midlatitudes. This study emphasizes the need for turbulence avoidance guidelines for the aviation community that are dependent on convective stage.


1955 ◽  
Vol 36 (5) ◽  
pp. 195-203 ◽  
Author(s):  
Robert R. Dickson

Data, acquired by specially instrumented aircraft, are presented for two levels through a northwesterly jet stream. Wind shear on the cyclonic side of this jet stream is roughly twice that on the anticyclonic side. Stronger areas of clear air turbulence appear closely related to strong vertical wind shear. An area of uniform absolute vorticity exists for about 160 nautical miles north of the jet stream. Measured microvariations of the temperature along a pressure surface—up to 3.1 C° in 8.5 nautical miles—give indirect evidence of jet stream “fingers” of high velocity.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


2013 ◽  
Vol 26 (21) ◽  
pp. 8513-8528 ◽  
Author(s):  
Megan S. Mallard ◽  
Gary M. Lackmann ◽  
Anantha Aiyyer

Abstract A method of downscaling that isolates the effect of temperature and moisture changes on tropical cyclone (TC) activity was presented in Part I of this study. By applying thermodynamic modifications to analyzed initial and boundary conditions from past TC seasons, initial disturbances and the strength of synoptic-scale vertical wind shear are preserved in future simulations. This experimental design allows comparison of TC genesis events in the same synoptic setting, but in current and future thermodynamic environments. Simulations of both an active (September 2005) and inactive (September 2009) portion of past hurricane seasons are presented. An ensemble of high-resolution simulations projects reductions in ensemble-average TC counts between 18% and 24%, consistent with previous studies. Robust decreases in TC and hurricane counts are simulated with 18- and 6-km grid lengths, for both active and inactive periods. Physical processes responsible for reduced activity are examined through comparison of monthly and spatially averaged genesis-relevant parameters, as well as case studies of development of corresponding initial disturbances in current and future thermodynamic conditions. These case studies show that reductions in TC counts are due to the presence of incipient disturbances in marginal moisture environments, where increases in the moist entropy saturation deficits in future conditions preclude genesis for some disturbances. Increased convective inhibition and reduced vertical velocity are also found in the future environment. It is concluded that a robust decrease in TC frequency can result from thermodynamic changes alone, without modification of vertical wind shear or the number of incipient disturbances.


Author(s):  
Peter M. Finocchio ◽  
Rosimar Rios-Berrios

AbstractThis study describes a set of idealized simulations in which westerly vertical wind shear increases from 3 to 15 m s−1 at different stages in the lifecycle of an intensifying tropical cyclone (TC). The TC response to increasing shear depends on the intensity and size of the TC’s tangential wind field when shear starts to increase. For a weak tropical storm, increasing shear decouples the vortex and prevents intensification. For Category 1 and stronger storms, increasing shear causes a period of weakening during which vortex tilt increases by 10–30 km before the TCs reach a near-steady Category 1–3 intensity at the end of the simulations. TCs exposed to increasing shear during or just after rapid intensification tend to weaken the most. Backward trajectories reveal a lateral ventilation pathway between 8–11 km altitude that is capable of reducing equivalent potential temperature in the inner core of these TCs by nearly 2°C. In addition, these TCs exhibit large reductions in diabatic heating inside the radius of maximum winds (RMW) and lower-entropy air parcels entering downshear updrafts from the boundary layer, which further contributes to their substantial weakening. The TCs exposed to increasing shear after rapid intensification and an expansion of the outer wind field reach the strongest near-steady intensity long after the shear increases because of strong vertical coupling that prevents the development of large vortex tilt, resistance to lateral ventilation through a deep layer of the middle troposphere, and robust diabatic heating within the RMW.


Author(s):  
Branden Katona ◽  
Paul Markowski

AbstractStorms crossing complex terrain can potentially encounter rapidly changing convective environments. However, our understanding of terrain-induced variability in convective stormenvironments remains limited. HRRR data are used to create climatologies of popular convective storm forecasting parameters for different wind regimes. Self-organizing maps (SOMs) are used to generate six different low-level wind regimes, characterized by different wind directions, for which popular instability and vertical wind shear parameters are averaged. The climatologies show that both instability and vertical wind shear are highly variable in regions of complex terrain, and that the spatial distributions of perturbations relative to the terrain are dependent on the low-level wind direction. Idealized simulations are used to investigate the origins of some of the perturbations seen in the SOM climatologies. The idealized simulations replicate many of the features in the SOM climatologies, which facilitates analysis of their dynamical origins. Terrain influences are greatest when winds are approximately perpendicular to the terrain. In such cases, a standing wave can develop in the lee, leading to an increase in low-level wind speed and a reduction in vertical wind shear with the valley lee of the plateau. Additionally, CAPE tends to be decreased and LCL heights are increased in the lee of the terrain where relative humidity within the boundary layer is locally decreased.


2018 ◽  
Vol 146 (11) ◽  
pp. 3773-3800 ◽  
Author(s):  
David R. Ryglicki ◽  
Joshua H. Cossuth ◽  
Daniel Hodyss ◽  
James D. Doyle

Abstract A satellite-based investigation is performed of a class of tropical cyclones (TCs) that unexpectedly undergo rapid intensification (RI) in moderate vertical wind shear between 5 and 10 m s−1 calculated as 200–850-hPa shear. This study makes use of both infrared (IR; 11 μm) and water vapor (WV; 6.5 μm) geostationary satellite data, the Statistical Hurricane Prediction Intensity System (SHIPS), and model reanalyses to highlight commonalities of the six TCs. The commonalities serve as predictive guides for forecasters and common features that can be used to constrain and verify idealized modeling studies. Each of the TCs exhibits a convective cloud structure that is identified as a tilt-modulated convective asymmetry (TCA). These TCAs share similar shapes, upshear-relative positions, and IR cloud-top temperatures (below −70°C). They pulse over the core of the TC with a periodicity of between 4 and 8 h. Using WV satellite imagery, two additional features identified are asymmetric warming/drying upshear of the TC relative to downshear, as well as radially thin arc-shaped clouds on the upshear side. The WV brightness temperatures of these arcs are between −40° and −60°C. All of the TCs are sheared by upper-level anticyclones, which limits the strongest environmental winds to near the tropopause.


Sign in / Sign up

Export Citation Format

Share Document